from C. britannicus, Verhoeff, and C. frisius, Verhoeff, both of which are not uncommon Englisis species. However, the gonopods, which are figured by Brölemam and Verhoeff (loc. cit.), are quite definite diagnostic characters, and so there is no donbt about the record. Our material bears these numbers :-1379, 1380, 1381, 1382, Brade-Birks collection.

## Reference.

(t) Brölfanany, II. W., and C. IV. Verhoeff. "Matériaux pour servir à uue faune des Myriapodes de France." Feuille des Jeunes Naturalistes, Sept. 1896, no. 311, pp. 214 et seq., with 10 text-figs.

## XLVIII.- Note on the Pectoral Fin of Euthenopteron. By Dr. Branislay Petronievics.

T're pectoral fin of Eusthenopteron was figured and described for the first time by Whiteaves (comp. J. F. Whiteaves, 1889, p. 87, \& pl. v. fig. 5), whose description was improved by 'I'raquair (comp. R. H. 'Iraquair, 1890, p. 19). Two other specimens of the same fin were figured by A. S. Woodward (1898, p. 25) and W. Patten (1912, p. 391).

Daring my stay in London this year the pectoral fin in the British Mluseum specimen P. (i796 of Eusthenopteron, figured by A.S. Woodward (whose figure was republished by E. S. Goodrich in 1902, pl. xvi. fig. 1), was somewhat newly prepared by Mr. F. (). Badow. I give here a new figure of it (comp, text-fig. 1) and a brief description.

The pectoral fin in our specimen is composed (1) of an axis, (2) of preaxial radials, and (3) of postaxial processes.

The axis consists of four pieces. The first or basal piece is situated behind the displaced cleithrum, of which the inferior edge lies near to its superior edge in the specimen. It is not possible to decide whether this elongated and somewhat obscure bony matter is to be identified wholly with the basal piece of the fin, or whether it does not comprise also the coraco-scapular ossification. Should this latter be the case, then the front edge of the postradial process of the hasal would mark the limit between the basal and coraco-scapula.

The second piece of the axis is expanded and slightly bifurcated posteriorly. The third piece is somewhat longer than the second and expanded still more posteriorly, where it has not only a large postaxial process, but is also more distinctly bifurcated.

Fig. 1.


Pectoral 1"n of liwsthenopterom, British Museum specimen P. 6796. Nat. size.
rl. cleithrum ; cose., the possible coraco-scapula; 1.art., the first axonost (1) the basal; 2.a.at., second axonnst; 3.art., third axonost ; 4.axt., fourth axonoat; I.prow., first preaxial radial; II.pra.r., second praxial radial: III.puc.r., third preaxial radial ; pa.pr., postaxial proce:s; dermal rays are represented by lines.

Finally, the fourth piece of the axis is somewhat constricted in the middle, and quite distinctly bifurcated posteriorly (a feature not marked in the figure of A.S. Woodward, i8e8). When looked at with a magnifying-glass, these two posterior branches seem to continue in two separate ossifications, so that the composition of this fom th axonost of two separate parts is not improbable, although not to be affirmed with certainty, the separating line between the two being perhaps due to a crack. One sees also with the magnifyingglass the clear attachment of a dermai ray to the left of these two bifurcations, while a fragment of somewhat crushed bony matter attached to the right bifurcation also probably represents dermal rays.

There are three preaxial radials in our specimen. The uppermost radial is attached to one of the two articnlating surfaces of the basal axonost; it is bent inwards in the middle and constricted posteriorly. The neiv preparation shows the attachment of the dermal rays to this radial very clearly. The second radial, attached to the smaller of the two articulating surfaces of the second axonost, is also constricted posteriorly, but not sufficiently preserved in its posterior part. The third radial, better preserved than the second, is constricted in the middle, but the limit of its posterior part is indeterminable. It is attached to the smaller of the two articulating bifurcations of the third axonost.

There are only two postaxial processes in our specimen, and no postaxial radials at all. 'The first process is a large proIneration of the basal axonost (this prolongation is not well visible in the figure of A.S. Woodward, 1898), and the second a prolongation of the third axonost, while the second and the fourth axonosts are devoid of sinilar processes (on the left side of the second axomost some bony matter is visible in our specimen, but it is evidently a crushed scale).

Having finished the description of the fin in question, I will add some remarks concerning the problem of the origin of the tetrapod limb. The resemblance of the internal skeleton of the pectoral (and also of the pelvic) fin in Eusthenopteron to the intemal skelefon in the tetrapod limb has been emphasized loy se veral authors (h,y Patten, Wateon, Broom, Grogory), and Wat:on especially has tried to point ont in detail the homologies of hoth (comp. Watson, 1913, p. 25 seq. and figs. 1 \& 2). But his restoration of the pectural fin of Eusthenopteron (l.c. tig. 2) is wromg, inasmuch as he takes $n 0$ account of the posterior bifureation of $t$ ! e four haxonost (in this respect the re-toration of Broom, 1913, p.460, fig. 1 , is more accurate) and represents the postaxial process of the
basal axonost as a separate postaxial radial (in this respect the restoration of Brom is oxact).

Now I consider the posterior bifurcation of the fourth axonost in our specimen as of exceptional importance for the question of homologies. As the pelvic fin of Eusthenopteron is far more reluced than its pectoral fin (comp. fig. 1 of pl. xvi. in Goodrich, 1902 , which shows that there is no fonfl axonost in the pelvic fin-British Museum specimen 1. 6794-and no postaxial processes), we must infer that the paired fins of Eusthenopleron represent a stage far in advance of that stage of the paired fins in its ancestors, which was the starting-point for the evolution of the paired limbs in the primitive ancestors of the 'letrapoda*. If this inference is a right one, then it is not improbable that the posterior bifuration of the fouth axonost in our specimen is a remnant of a more primitive stage when the fourth axonost was composed of two separate ossifications, the paired fins of Eusthenopteron being evidently the reduced archipterygium-type of Gegenbaur (a resemblance recognized by Woodward, Traquair, and others). So that we have to conclude from this evolution that the axis of the tetrapod limb rims along the humerus, ulna, ulnare, and between the fourth and fifth finger $\dagger$ (comp. text-fig. 2, in which some futher hypothetical homologies have been indicutel). This conclusion, as one sece,

[^0]does not entirely confirm the theory of Gegenbaur, according to which the tetrapod limb is derived from a reduced uniserial archipterygium (comp. Gegenbaur, 1898, p. 520), but nevertheless it is more in conformity with this theory than with the other (also advocated by Watson), which takes a reducel biserial archipteryginm for the base of the tetrapod limb.

Fig.' 2.


The internal skeleton of the Pectoral Fin of Eusthennpteron, showing homolories with the tetrapod limb. Nat. size.
hu., humerus ; u., ulna ; r., radius ; ul., ulnare ; p., pisiform ; ca., three distal carpalia; I.-V., digits ; ax., axis of the tetrapod limb.

In conclusion, I desire to express my thanks to Dr. Smith Woodward for the loan of the new preparation and for valuable help.

## Literature.

1. J. F. Whiteates. "Illustrations of the Fossil Fishes of the Ievonian Rocks of Canada," in Trans. Roy. Soc. Cauada, vol. ri. 1889, p. 77 seq. (on Eusthenopteron, p. 78 seq.).
2. R. H. Traquair. "Notes on the Devonian Fishps of Scammenac bay and Campelltown in Canadu," in Geol. Mag. vol. vii. 1890, p. is) seq. (on Eusthenopteroit, 1. 18 seq.).
A. 1. S. Whonwarn. 'Cataturue of the Fossil Fishes in the British Musentin.' pt. ii. 1-91 (on limsthempteron, p. 361 seq.).
3. -. 'Vertebrate P'alwontoloyry' 189 s (on L'usthenopleron, p. 25. seq. \& p, $\quad$ ( 6 seq.).
4. E.S. Cinomarit. "On the Pelvic (firdle and Fin of Eusthenopteron," in (Quart, Journ. Micr. Sire. rol. xle, 1902, p. 311 seq.
(i. --. "Cyclo-tomes and Fishes," Part IN. Vertebrata Craniata of Sir Ray Lankester's ' I 'Treatise of 'Loologry.' 1909.
5. L. Ilrssikof. "Notes on loronic Fishes from Scamemar Bay, Quebec," New York State Musenm, Bulletin 156, 1:912, p. 127 seq. (on Eusthenopterom, p. $1: 31$ seq.).
$\therefore$ W. P'atren. 'The Erolution of the Vertebrates and their Kin,' 1912 (on Ensthenopteron, p. 391).
6. W. K. (inefory. "Iresent Status of the Problem of the Origin of the Tetrapoda, with special reference to the Slull and Paired Limbs," in Anmals N. Y. Acad. Sci. vol. xxvi. 1915, p. 317 seq. (on Finsthenopteron, p. 3is seq. is p. 364).
7. C. Cibchamauk. 'Vergleichendo Anatomie der Wirbeltiere,' i. Bd., 1898.
8. D. M. S. Watson. "On the Primitive Tetrapod Limb," in 'Anatomischer Anzeiger,' vol. xliv. 1913, pp. 24-927.
9. T. Bronm. "On the Origiun of the Cheiropteryyium," in Bull. Amer. Mus. Nat. Hist. yol. xxxii. 1913, pp. 459-404.

## XLIX.-Descriptions and Records of Bees.-LXXXII. By T. D. A. Cockerfle, University of Colorado.

## Exomalopsis mellipes, Cresson.

The male, not before known, has been collected by H. II. Hyde at Medellin, Vera Cruz, Mexico (Baker coll., 1785). It rums in Friese's table of males to E.planiceps, Sm., bitt is larger, with red legs.

## Exomalopsis vincentana, Cockerell.

The male, previously unknown, was collected by H. II. Smith on the windward side of St. Vincent. It is lardly 5 mm . long, and there is much black hair on mesothoma, scutellum, and legs. It is nearest to E. ylobosu, but distimunished at once by the ochreous-yellow tarsi.

Thure is a series of small Exomalopsis (including Anthophorula), which are superficially similar and easily confused. They may be separated by the following table, based on females:-

[^1]
[^0]:    * This conchusion is confirmed also by the slull, which in Eusthenopteron is simpler than in the more primitive Osteolepide, whose paired fins are also less reduced (comp. the tins of Vegalichthys figured by Ed. D. Wellburn in his paper "On the Cemms Wegalichtizys," in Proc. Yurkshire (teol. \& Polytechnic Soc. vol. xiv., 1900). 1 may add in this commexion that the skull of Osteolepis may be considered to upproach nearer to the Stegocephalian skull than is shown by the restoration of I'ander' (comp. Chr. II. Pander,' Ueber die Sanrodipterinen, \&c.;' 1860, pl.i. figs. 8 (i) 9), lately reproduced by (iregny (comp. Gregory, 1915, lig. 2, A, 13). Pander's restoration was founded on the specimen of Osteolepis microlepidotus figured by him in pl. i. fig. I ; but tig. 4 on the same plate represents a specimen in which all the three characteristic bones of the Sterocephalian skull (supratemporal, intertemporal, postorbital) are present.
    + The pectoral fin of Samipterus taylori (figured and restored by Gregory, 1915, plate iv. and fig. 9) does not militate against this supposition. This fin, less reduced than that of Ensthenopteron, has three clements attached to the third axonost, so that these three elements may correspond with the three digits on the ulnar side of the tetrapod limb. As the two outer of these three elements hare almost the same length, it may well be supposed that the axis rums between the two (and not along the outcr one alone, as Gregory bypothetically supposey-comp. firegory, $1: 115$, p. $3 t i 0$ ). I should mention that the first to emphasize the resemblance of the siof tome-fin with the tetrapod limb was its discorrer, James IJall himseli' (comp. J. Hall, 'Geolngy of New Vork,' part is. 1a43, 1. 28:3).

[^1]:    Second alolominal serment with oblique stripes of lisht hair at siles, bit no apical band

